Increased Host Investment in Extrafloral Nectar (EFN) Improves the Efficiency of a Mutualistic Defensive Service
نویسندگان
چکیده
Extrafloral nectar (EFN) plays an important role as plant indirect defence through the attraction of defending ants. Like all rewards produced in the context of a mutualism, however, EFN is in danger of being exploited by non-ant consumers that do not defend the plant against herbivores. Here we asked whether plants, by investing more in EFN, can improve their indirect defence, or rather increase the risk of losing this investment to EFN thieves. We used the obligate plant-ant Acacia-Pseudomyrmex system and examined experimentally in the field during the dry and the rainy seasons how variations in EFN secretion are related to (i) ant activity, to (ii) the ant-mediated defence against herbivores and (iii) the exploitation of EFN by non-ant consumers. Extrafloral investment enhanced ant recruitment and was positively related to the ant mediated defence against herbivores. The ant-mediated protection from exploiters also increased in proportion to the nectar sugar concentration. Although the daily peak of EFN production coincided with the highest activity of EFN thieves, Pseudomyrmex ferrugineus ants protected this resource effectively from exploiters. Nevertheless, the defensive effects by ants differed among seasons. During the dry season, plants grew slower and secreted more EFN than in the rainy season, and thus, experienced a higher level of ant-mediated indirect defence. Our results show that an increased plant investment in an indirect defence trait can improve the resulting defensive service against both herbivores and exploiters. EFN secretion by obligate ant-plants represents a defensive trait for which the level of investment correlates positively with the beneficial effects obtained.
منابع مشابه
Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters.
Ant-plant interactions represent a diversity of strategies, from exploitative to mutualistic, and how these strategies evolve is poorly understood. Here, we link physiological, ecological, and phylogenetic approaches to study the evolution and coexistence of strategies in the Acacia-Pseudomyrmex system. Host plant species represented 2 different strategies. High-reward hosts produced significan...
متن کاملGlucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens.
Nectars are rich in primary metabolites and attract mutualistic animals, which serve as pollinators or as an indirect defense against herbivores. Their chemical composition makes nectars prone to microbial infestation. As protective strategy, floral nectar of ornamental tobacco (Nicotiana langsdorffii x Nicotiana sanderae) contains "nectarins," proteins producing reactive oxygen species such as...
متن کاملPartner manipulation stabilises a horizontally transmitted mutualism.
Mutualisms require protection from non-reciprocating exploiters. Pseudomyrmex workers that engage in an obligate defensive mutualism with Acacia hosts feed exclusively on the sucrose-free extrafloral nectar (EFN) that is secreted by their hosts, a behaviour linking ant energy supply directly to host performance and thus favouring reciprocating behaviour. We tested the hypothesis that Acacia hos...
متن کاملHerbivore-induced plant volatiles induce an indirect defence in neighbouring plants
1 Many plant species respond to herbivory with increased emission of volatile organic compounds (VOCs): these attract carnivorous arthropods and thereby function as an indirect defence mechanism. Whether neighbouring plants can ‘eavesdrop’ on such airborne cues and tailor their defences accordingly, remains controversial. 2 We used Lima bean plants ( Phaseolus lunatus ) to investigate whether h...
متن کاملPostsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism.
Obligate Acacia ant plants house mutualistic ants as a defense mechanism and provide them with extrafloral nectar (EFN). Ant/plant mutualisms are widespread, but little is known about the biochemical basis of their species specificity. Despite its importance in these and other plant/animal interactions, little attention has been paid to the control of the chemical composition of nectar. We foun...
متن کامل